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1 Additional empirical study results

1.1 Simulation study on logistic regression with only main effects

Here we report a few more simulation examples, in which there are only main effects by no in-

teractions, to compare SODA with Lasso (denoted as Lasso-Logistic) on logistic regression variable

selection. Examples 0.1 and 0.2 illustrate two simulation settings, respectively. In both examples,

we simulated predictors X from the multivariate normal distribution with covariance matrix C. In

Example 0.1 we set C to have power decay correlations between variables, and in Example 0.2 we

obtained C from a real dataset. Let Q denote the Fisher information matrix of the form,

Q ≡ E
{
−∇2 log p (Y | X,θ0)

}
=

exp
(
θT0 X

)
(
1 + exp

(
θT0 X

))2 XXT . (1)

Let sub-matrices Q21 = QPc,P and Q11 = QP,P . The consistency of Lasso-Logistic requires the

“incoherence" (Ravikumar et al. 2010) or the “irrepresentable" (Zhao and Yu 2006) condition that

there exists an α ∈ (0, 1] such that ∥∥∥Q21Q−1
11

∥∥∥
∞
≤ 1− α.
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Let c = Q21Q−1
11 , then c has the length as the number of unrelated predictors, and the incoherence

condition requires each element of c to be smaller than 1.

For each setting, we randomly generated 100 datasets from the logistic regression model with

n = 100, 150, . . . , 2000 observations, and applied SODA and Lasso-Logistic to each data set. We

used EBICγ as criterion for both SODA and Lasso-Logistic. Lasso-Logistic fitted a solution path

of selected predictors, and chose the optimal set of predictors with the lowest EBICγ . In simulation

studies, we set γ = 0.5. We calculated the average number of false negatives (FN) and false

positives (FP), and the percentage of correct fits (PCF), which is the percentage of times that the

selected set is the true set A. For SODA, any selected interaction term would also be considered as

a false positive.

Example 0.1. Let p = 1000, and we randomly selected 5 true predictors with coefficients

β0,j ∼ Unif [0.5, 2], j ∈ A. The covariance matrix is set to have power decay correlation such that

Ci,j = (0.5)|i−j|. Following a similar argument as Corollary 3 of Zhao and Yu (2006), it is easy

to show that X satisfies the incoherence condition. The histogram of elements of c in log-scale for

one simulation run is plotted in Figure 1, and it is shown that no cj ≥ 1 in c. As shown in Figure 2,

SODA and Lasso-Logistic had very similar performances under this setting.

Example 0.2. In this example, we also randomly selected 5 true predictors with coefficients

β0,j ∼ Unif [0.5, 2], j ∈ A. The covariance matrix C was set to be the sample covariance matrix

of the Michigan lung cancer dataset (Beer et al. 2002) with p = 5, 217 genes. So Example 0.2 had

a much higher dimension than Example 0.1. The histogram of elements of c in log-scale for one

simulation run is plotted in Figure 1.

As illustrated by Figure 1, in Example 0.2 many predictors are highly correlated with each

other, and thus the incoherence condition is strongly violated. As shown in Figure 2, in this case

Lasso-Logistic had a very poor performance whereas SODA performed robustly. As n increases, the

Lasso-Logistic’s total number of FPs and FNs increased, and PCF stayed at zero. In contrast, SODA

had an increasing probability of selecting the correct model A as n increases. In both examples,

SODA did not select any interaction term for all simulations.

1.2 Real data analysis on prostate cancer dataset

The microarray technology is widely used for measuring expression abundance of genes. There

have been tremendous efforts on building classification methods to diagnose cancer patients from

microarray data. In Singh et al. (2002), researchers measured the gene expressions of 52 prostate

cancer patients and 50 controls on p = 6, 033 genes. The goal is to predict whether a person has

prostate cancer from the expression of those genes. Efron (2009) proposed an empirical Bayes

approach for large-scale classification, and compared its performance with that of the shrunken

centroids method proposed in Tibshirani et al. (2002). With different thresholds, the shrunken

centroids method and the empirical Bayes report selected set of predictors truncated at different

sizes. A common way of applying the two methods is to obtain selected predictors with different

thresholds, and pick the best set by cross-validation (CV). We implemented these two methods
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Figure 1: Histogram of elements of c in one simulation run for Example 0.1 (Left) and 0.2 (Right).

and calculated the CV prediction error of the selected gene set of different sizes. The number of

selected genes and the 10-fold CV error rate (CVE) of two methods on different thresholds are

shown in Table 1.

The shrunken centroids method selected 377 genes at the threshold λ = 2.16 that achieved the

lowest CVE, and empirical Bayes method selected the best set with 51 genes. In the solution path

of Lasso-Logistic, the lowest EBIC0.5 was achieved at 133.3 with 3 genes, and the corresponding

CVE was 17%. SODA selected 6 main effects and 0 interaction with the EBIC0.5 score at 93.4 and

the CVE at 6%.

MDR failed to converge on this dataset. In particular, MDR selected as many genes as possible

until the number of selected genes was the same as the number of samples in the smaller class

(50). Subsequently the estimated covariance matrix for the smaller class became singular and the

procedures could not proceed. ∆BICG, defined as the difference of BICG two adjacent steps (see

the main paper), is shown for each step in Table 1. MDR proceeds if ∆BICG < 0 and eventually

selects 49 genes with CVE 52%.

We applied IIS-SQDA to this problem by running the R code provided by its authors. But for

this dataset IIS-SQDA did not finish the analysis in 48 hours. The reason is as noted in Fan et al.

(2015) that IIS needs to estimate the precision matrices, which can be very slow when the number

of predictors p is large.

It is worth noting that although the final model selected by SODA has only main effect terms

with no interactions, SODA’s model managed to outperform the one selected by Lasso-logistic

in terms of both the EBIC0.5 score and the CVE. This strong result obtained by SODA is also

surprising to us, indicating that EBIC is a good criterion to follow and our stepwise approach is a

better optimizer of EBIC than Lasso. Indeed, when one moves away from the L1 regularization

realm but adopts the L0 regularization framework (such as AIC, BIC, EBIC, etc.), Lasso can no

longer guarantee to find the optimal solution. We consistently observed that SODA outperformed

Lasso in various simulation settings in finding configurations with a low EBIC0.5 score.
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Figure 2: Simulation study results for Example 0.1 (top) and 0.2 (bottom). FP: average number
of false positives. FN: average number of false negatives. PCF: percentage of times of selecting
correct model A.

2 Proofs

Let ‖·‖2, ‖·‖∞, ‖·‖sp and ‖·‖F respectively denote L2, L∞, spectral and Frobenius norms. Let

I {·} denote the identify function such that it takes value 1 if the statement within {·} is true and takes

value 0 otherwise. Suppose A and B are two square symmetric matrices with same dimensions,

then A � B indicates matrix A − B is positive-definite. Suppose C is a predictor set, then Cc

denotes its complementary set, i.e. Cc = {1, . . . , p} \C.

Let θS = (θ1,S , · · · ,θK,S) denote the parameter vector where coefficients are set as 0 for terms

not in S, where θk,S denotes corresponding coefficients for class k. By definition θK,S ≡ 0. The

log-likelihood for θS on observations {(yi,xi) : i = 1, . . . , n} is

ln (θS) =
n∑
i=1

{
θTyi,Szi − log

(
1 +

K−1∑
l=1

exp
(
θTl,Szi

))}
.

Let µi,k (θS) denote the estimated probability of ith observation being in class k with parameters
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Shrunken centroid Empirical Bayes MDR Lasso-Logistic SODA
#P CVE #P CVE ∆BIC #P CVE EBIC0.5 #P CVE EBIC0.5 #M/#I CVE

0 0.52 1 0.34 -68 1 0.28 140.3 1 0.28 140.3 1 / 0 0.28

1 0.48 5 0.30 -74 2 0.28 134.2 2 0.22 133.0 2 / 0 0.21

4 0.41 10 0.27 -68 5 0.17 133.3 3 0.17 124.1 3 / 0 0.17

35 0.30 15 0.26 -57 10 0.11 141.4 4 0.16 107.8 4 / 0 0.15

80 0.16 20 0.21 -64 15 0.11 144.3 5 0.16 100.9 5 / 0 0.09

172 0.10 25 0.20 -74 20 0.14 151.3 6 0.13 93.4 6 / 0 0.06
377 0.09 30 0.15 -90 25 0.20 156.7 7 0.13

866 0.12 35 0.11 -108 30 0.28 151.9 8 0.11

1,931 0.23 40 0.12 -122 35 0.31 158.4 9 0.11

3,763 0.33 45 0.09 -141 40 0.41 167.9 10 0.12

6,033 0.34 51 0.09 -166 49 0.52 177.4 11 0.13

Table 1: The summary of results on the prostate cancer dataset by the five methods. The results
of shrunken centroids and empirical Bayes methods are copied from Table 1 of Efron (2009). For
Lasso-Logistic, MDR and SODA, the selected set with lowest BIC score is highlighted in bold font.
∆BIC: For MDR method, the difference of BICG between two adjacent steps. CVE: prediction
error estimated by 10-fold cross-validation. #P: number of selected predictors. #M / #I: number of
selected main effect and interaction terms by SODA.

θS ,

µi,k (θS) = Pr (yi = k | X,θS) =
exp

(
θTk,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

) , k = 1, . . . ,K,

The true probability of yi = k with true parameters is µi,k (θ0). Let σ2
i,k (θS) denote the variance

of I {yi = k} with parameters θS ,

σ2
i,k (θS) = µi,k (θS) (1− µi,k (θS))

Let sn (θS) denote the score vector, where sn (θS) =
[
sTn,1 (θS) , . . . , sTn,K−1 (θS)

]T
and

sn,k (θS) = ∂ln (θS)
∂θk,S

=
n∑
i=1

[I {yi = k} − µi,k (θS)] zi.

Let Hn (θS) denote the negative Hessian matrix of ln (θS), which consists of (K − 1) × (K − 1)
blocks. The k1th row, k2th column block is

Hn,k1,k2 (θS) = − ∂2ln (θS)
∂θk1,S∂θ

T
k2,S

=
n∑
i=1

µi,k1 (θS) [I {k1 = k2} − µi,k2 (θS)] zizTi
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With the notation of Kronecker product, Hn (θS) is

Hn (θS) =
n∑
i=1

Ui (θS)⊗
(
zizTi

)
,

where Ui (θS) is a (K − 1)× (K − 1) matrix and is a function of θS . Ui,k,k (θS) = σ2
i,k (θS) and

Ui,k1,k2 (θS) = −µi,k1 (θS)µi,k2 (θS) for k1 6= k2. Let sS (·) and HS (·) respectively denote the

sub-vector and sub-matrix of sn (·) and Hn (·) corresponding to parameters associated terms in S.

Let Q (θS) denote the Fisher information matrix. It consists of (K − 1)× (K − 1) blocks. The

k1th row, k2th column block is

Qk1,k2 (θS) = E
[
− ∂2l1 (θS)
∂θk1,S∂θ

T
k2,S

]

= E

 exp
(
θTk1,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
I {k1 = k2} −

exp
(
θTk2,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
Z ZT

 ,
where the expectation is taken over sampling distribution of (Z, Y ) under true parameters θ0. Let

QS (·) denote the sub-matrix of Q (·) corresponding to parameters for terms in S .

2.1 Proof of Lemmas 1~3

Lemmas 1~3 are required to prove the theorems in this article. Foygel and Drton (2011) proved

similar lemmas for univariate generalized linear models with linear terms. Using similar arguments,

we show the lemmas for the multinomial (multi-class) logistic regression model.

Lemma 1. Under conditions C1 ~ C4, any local change in the Hessian is asymptotically bounded

from above. Fix any positive integer constant Q and all S with |S| ≤ Q, for all θS , θ′S , there exist

constants λ3 > 0 and C1 > 0, such that for any constant integer M > 2κ, as n→∞,

Pr
{
λmax

( 1
n

HS (θS)− 1
n

HS
(
θ′S
))
≤ λ3

∥∥θS − θ′S∥∥2

}
≥ 1− C1n

2κ−M → 1, (2)

where λmax (·) denotes the largest eigenvalue of a matrix.

6



Proof: Define ai,k1,k2 (θS) = µi,k1 (θS) [I {k1 = k2} − µi,k2 (θS)]. We have

∥∥HS (θS)−HS
(
θ′S
)∥∥

sp ≤
∥∥HS (θS)−HS

(
θ′S
)∥∥

F

=

√√√√K−1∑
k1=1

K−1∑
k2=1

∥∥Hk1,k2,S (θS)−Hk1,k2,S
(
θ′S
)∥∥2

F

≤
√

(K − 1)2 max
k1,k2

∥∥Hk1,k2,S (θS)−Hk1,k2,S
(
θ′S
)∥∥2

F

= (K − 1) max
k1,k2

∥∥Hk1,k2,S (θS)−Hk1,k2,S
(
θ′S
)∥∥

F

= (K − 1) max
k1,k2

∥∥∥∥∥
n∑
i=1

ai,k1,k2 (θS) zi,SzTi,S −
n∑
i=1

ai,k1,k2

(
θ′S
)
zi,SzTi,S

∥∥∥∥∥
F

= (K − 1) max
k1,k2

∥∥∥∥∥
n∑
i=1

[
ai,k1,k2 (θS)− ai,k1,k2

(
θ′S
)]

zi,SzTi,S

∥∥∥∥∥
F

(3)

Let θ′′S = tθS + (1− t)θ′S , then there exists t ∈ (0, 1) such that

(3) = (K − 1) max
k1, k2

∥∥∥∥∥
n∑
i=1

{[
θS − θ′S

]T ∇ai,k1,k2

(
θ′′S
)}

zi,SzTi,S

∥∥∥∥∥
F

≤ (K − 1) max
k1, k2

∥∥∥∥∥
n∑
i=1

∥∥θS − θ′S∥∥2 ·
∥∥∇ai,k1,k2

(
θ′′S
)∥∥

2 · zi,Sz
T
i,S

∥∥∥∥∥
F

≤
∥∥θS − θ′S∥∥2 · (K − 1) max

k1, k2

n∑
i=1

∥∥∇ai,k1,k2

(
θ′′S
)∥∥

2 ·
∥∥∥zi,SzTi,S∥∥∥F

(4)

For k1 6= k2, ai,k1,k2 (θS) = −µi,k1 (θS)µi,k2 (θS). Let |·| denote the element-wise absolute value

of a vector. For h such that h 6= k1 and h 6= k2, and , then

∣∣[∇ai,k1,k2 (θS)]h
∣∣ =

∣∣∣∣∣∂ai,k1,k2 (θS)
∂θh,S

∣∣∣∣∣
=

∣∣∣∣∣∣∣
exp

(
θTk1,Szi

)
exp

(
θTk2,Szi

)
/
[
1 +

∑K−1
l=1 exp

(
θTl,Szi

)]2
∂θh,S

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2
[
1 +

∑K−1
l=1 exp

(
θTl,Szi

)]
exp

(
θTh,Szi

)
exp

(
θTk1,Szi

)
exp

(
θTk2,Szi

)
[
1 +

∑K−1
l=1 exp

(
θTl,Szi

)]4 zi,S

∣∣∣∣∣∣∣
≤ 2 |zi,S | ,

where the last ≤ denotes element-wise ≤ of two vectors. Similarly we can show that for h = k1 6=
k2 or h 6= k1 = k2 or h = k1 = k2, we all have

∣∣[∇ai,k1,k2 (θS)]h
∣∣ =

∣∣∣∣∣∂ai,k1,k2 (θS)
∂θh,S

∣∣∣∣∣
≤ 2 |zi,S |
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Therefore
∥∥∇ai,k1,k2

(
θ′′S
)∥∥

2 ≤ 2 (K − 1)1/2 ‖zi,S‖2, and

(4) ≤ 2 (K − 1)3/2 ·
∥∥θS − θ′′S∥∥2 ·

n∑
i=1
‖zi,S‖2 ·

∥∥∥zi,SzTi,S∥∥∥F

≤ 2 (K − 1)3/2 ·
∥∥θS − θ′S∥∥2 ·

n∑
i=1
‖zi,S‖32

= 2 (K − 1)3/2 ·
∥∥θS − θ′S∥∥2 ·

n∑
i=1

∑
j∈S

z2
i,j

3/2

. (5)

By Jensen’s inequality,

n∑
i=1

∑
j∈S

z2
i,j

3/2

= |S|3/2
n∑
i=1

 1
|S|

∑
j∈S

z2
i,j

3/2

≤ |S|3/2
n∑
i=1

 1
|S|

∑
j∈S
|zi,j |3


≤ |S|3/2 max

j∈{1,...,p}

n∑
i=1
|zi,j |3 .

By condition C3, Zj is sub-exponential for all j, so for any finite positive integer M , there exists a

constant CM such that

E
[
|Zj |6M

]
≤ CM , for all j = 1, . . . , p. (6)

By Rosenthal’s inequality, there is a constant RM such that for all j = 1, . . . , p,

E

∣∣∣∣∣
n∑
i=1

(
|zi,j |3 − E

[
|Zj |3

])∣∣∣∣∣
2M


≤ RM


n∑
i=1

E
[(
|zi,j |3 − E

[
|Zj |3

])2M
]

+
(

n∑
i=1

E
[(
|zi,j |3 − E

[
|Zj |3

])2
])M

≤ RM

[
22Mn

{
E
[(
|zi,j |3

)2M
]

+
[
E
(
|Zj |3

)]2M}
+
[
4n
{
E
[(
|zi,j |6

)]
+
[
E
(
|Zj |3

)]2}]M]

≤ RM

[
22Mn

{
C2M +

[
E
(
|Zj |3

)]2M}
+ 22MnM

[{
E
[(
|zi,j |6

)]
+
[
E
(
|Zj |3

)]2}]M]
≤ C ′Mn

M ,

for sufficiently large n, where the positive constant C ′M is defined as

C ′M = 1 + 22M ·RM ·max
j

{[{
E
[(
|zi,j |6

)]
+
[
E
(
|Zj |3

)]2}]M}
. (7)
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For any positive constant integer M defined in 6, by Jensen’s inequality,

E
(
|Zj |3

)
≤
[
E
(
|Zj |6M

)]1/2M
≤ C1/2M

M . (8)

therefore let constant C1 = C ′M/CM , then

Pr

{
n∑
i=1
|zi,j |3 > 2nC1/2M

M

}
= Pr

{
n∑
i=1

[
|zi,j |3 − E

(
|Zj |3

)]
> 2nC1/2M

M −
n∑
i=1

E
(
|Zj |3

)}

≤ Pr

{
n∑
i=1

[
|zi,j |3 − E

(
|Zj |3

)]
> 2nC1/2M

M − nC1/2M
M

}

= Pr

{
n∑
i=1

[
|zi,j |3 − E

(
|Zj |3

)]
> nC

1/2M
M

}

= Pr


{

n∑
i=1

[
|zi,j |3 − E

(
|Zj |3

)]}2M

> n2MCM


≤

E
[{∑n

i=1

[
|zi,j |3 − E

(
|Zj |3

)]}2M
]

n2MCM

≤ C ′Mn
M

CMn2M

= C1n
−M .

Let q = 1
2p (p+ 3) be the total number of terms in Z, then with probability at least 1− q ·C1n

−M ,

there is a uniform bound,

max
j

n∑
i=1

z3
i,j ≤ 2nC1/2M

M ,

and

(5) ≤ 2 (K − 1)3/2 ∥∥θS − θ′S∥∥2 · |S|
3/2 ·max

j

n∑
i=1

z3
i,j .

≤ 2 (K − 1)3/2 ∥∥θS − θ′S∥∥2 · |S|
3/2 · 2nC1/2M

M

≤ λ3n
∥∥θS − θ′S∥∥2 ,

where positive constant λ3 = 4 (K − 1)3/2Q3/2C
1/2M
M . By condition (C1), q ≤ n2κ, then

q · C1n
−M ≤ C1n

2κ−M .

Choose M as any constant integer with M > 2κ, then as n → ∞, with probability at least 1 −

9



C1n
2κ−M → 1, uniformly for all S with |S| ≤ Q, for any θS and θ′S , there exists constant λ3 > 0,

λmax

( 1
n

HS (θS)− 1
n

HS
(
θ′S
))
≤ λ3

∥∥θS − θ′S∥∥2 .

Lemma 2. Under conditions C1 ~ C4, eigenvalues of the Hessian are asymptotically bounded from

above and below: Fix any positive constant integer Q. Choose positive constants M > 2κ and

m > 2κQ. Then for any constant R such that ∀ ‖θS‖2 ≤ R, there exist constants λ2 > λ1 > 0 and

C1, C2, C3 > 0, such that with probability at least 1− C1n
2κ−M − C2n

2κ−m − C3n
2κQ−m → 1

and uniformly for all S with |S| ≤ Q,

λ1 ≤ λmin

( 1
n

HS (θS)
)
< λmax

( 1
n

HS (θS)
)
≤ λ2.

Proof for lower bound: Let u denote a |S|-length unit vector,

λmin (QS (θS)) = min
‖u‖2=1

{
uTQS (θS) u

}
= min

‖u‖2=1

{
uT 1

n
HS (θS) u + uT

(
QS (θS)− 1

n
HS (θS)

)
u
}

≤ vT 1
n

HS (θS) v + vT
(

QS (θS)− 1
n

HS (θS)
)

v,

where v is an eigenvector of 1
nHS (θS) corresponding to its lowest eigenvalue. Therefore,

λmin

( 1
n

HS (θS)
)
≥ λmin (QS (θS))− vT

(
QS (θS)− 1

n
HS (θS)

)
v

≥ λmin (QS (θS))− λmax

(
QS (θS)− 1

n
HS (θS)

)
.

We first prove the positive-definiteness of QS (θS), namely there exists constant λ1 > 0 such

that

λmin (QS (θS)) > λ1.

By definition,

QS (θS) = E
[
U⊗

(
ZSZTS

)]
=
ˆ [

U⊗
(
ZSZTS

)]
dP (ZS) ,

where U is a (K − 1)× (K − 1) matrix and is a function of θS and Z,

U = Λ (θS ,Z)− [µ (θS ,Z)] [µ (θS ,Z)]T . (9)

where (K − 1) × (K − 1) diagonal matrix Λ (θS ,Z) has k-th diagonal element µk (θS ,Z), and

10



vector µ (θS ,Z) = [µ1 (θS ,Z) , . . . , µK−1 (θS ,Z)]T , where

µk (θS ,Z) =
exp

(
θTk,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

) .
Let v denote the unit minimal eigenvector of Cov (ZS). Without loss of generality, assume E [Z] =
0. By condition C4,

vTE
[
ZSZTS

]
v = vT

ˆ [
ZSZTS

]
dP (ZS) v ≥ τ1.

Define subspaceRM = [−M,M ]|S| ∈ R|S| and complementRcM = R|S|\RM , then

vTE
[
ZSZTS

]
v = vT

ˆ
ZS∈RM

[
ZSZTS

]
dP (ZS) v + vT

ˆ
ZS∈Rc

M

[
ZSZTS

]
dP (ZS) v

= f1 (M) + f2 (M)

≥ f1 (M) ,

where functions f1 (M) and f2 (M) are defined as

f1 (M) = vT
ˆ

ZS∈RM

[
ZSZTS

]
dP (ZS) v, (10)

f2 (M) = vT
ˆ

ZS∈Rc
M

[
ZSZTS

]
dP (ZS) v. (11)

Because of the semi-positive definiteness of
[
ZSZTS

]
, f1 (M) is a increasing function and f2 (M)

is a decreasing function of M , and f1 (0) = 0 and f1 (+∞) = τ1. There exists constant M > 0
such that

f1 (M) = vT
ˆ

ZS∈RM

[
ZSZTS

]
dP (ZS) v > 1

2τ1.

For Z ∈ RM , it is straightforward to show that there exists positive constant CM > 0 such that

CM <
∑K−1
k=1 µk (θS ,Z) < 1− CM and CM < µk (θS ,Z) < 1− CM for k = 1, . . . ,K − 1.

Let Uk1,k2 denote the k1th row, k2th column element of U. By definition of U in (9),

|Uk1,k1 | −
∑
k2 6=k1

|Uk1,k2 | = µk1 (θS ,Z)− µk1 (θS ,Z)
K−1∑
k2=1

µk2 (θS ,Z) (12)

= µk1 (θS ,Z)

1−
K−1∑
k2=1

µk2 (θS ,Z)

 (13)

≥ C2
M , (14)

therefore U− 1
2C

2
MIK−1 � 0 and U � 1

2C
2
MIK−1, since U− 1

2C
2
MIK−1 is a diagonally dominant

11



matrix, where IK−1 is an identify matrix. By property of Kronecker product,

U⊗
(
ZSZTS

)
� 1

2C
2
MIK−1 ⊗

(
ZSZTS

)
. (15)

Finally,

min
‖u‖=1

uTQS (θS) u = min
‖u‖=1

uT
{ˆ [

U⊗
(
ZSZTS

)]
dP (ZS)

}
u

= min
‖u‖=1

ˆ [
uTU⊗

(
ZSZTS

)
u
]
dP (ZS)

≥ min
‖u‖=1

ˆ
ZS∈RM

[
uTU⊗

(
ZSZTS

)
u
]
dP (ZS)

≥ min
‖u‖=1

ˆ
ZS∈RM

[
uT 1

2C
2
MIK−1 ⊗

(
ZSZTS

)
u
]
dP (ZS)

≥ 1
2C

2
M min
‖u‖=1

ˆ
ZS∈RM

[
uT IK−1 ⊗

(
ZSZTS

)
u
]
dP (ZS)

= 1
2C

2
M min
‖u‖=1

uT IK−1 ⊗
ˆ

ZS∈RM

[(
ZSZTS

)]
dP (ZS) u

= 1
2C

2
M ·

1
2τ1

thus there exists constant λ1 = C2
Mτ1/4 > 0,

λmin (QS (θS)) > λ1.

Next we derive the bound on λmax
(
QS (θS)− 1

nHS (θS)
)

. Note that

λ2
max

(
QS (θS)− 1

n
HS (θS)

)
=

∥∥∥∥QS (θS)− 1
n

HS (θS)
∥∥∥∥2

sp

≤
∥∥∥∥QS (θS)− 1

n
HS (θS)

∥∥∥∥2

F

=
K−1∑
k1=1

K−1∑
k2=1

∑
j1∈S

∑
j2∈S

W 2
k1,k2,j1,j2 ,

where

Wk1,k2,j1,j2 = 1
n

n∑
i=1

 exp
(
θTk1,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
I {k1 = k2} −

exp
(
θTk2,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
 zi,j1zi,j2

−E


 exp

(
θTk1,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
I {k1 = k2} −

exp
(
θTk2,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
Zj1Zj2

 .
Following the technique used in inequality (81) of Ravikumar et al. (2011), we derive a moment

12



bound for Wk1,k2,j1,j2 . Define Wi,k1,k2,j1,j2 with

Wi,k1,k2,j1,j2 =

 exp
(
θTk1,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
I {k1 = k2} −

exp
(
θTk2,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
 zi,j1zi,j2

−E


 exp

(
θTk1,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
I {k1 = k2} −

exp
(
θTk2,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
Zj1Zj2

 .
Thus Wk1,k2,j1,j2 =

∑n
i=1Wi,k1,k2,j1,j2/n. Let m be a positive integer, by Rosenthal’s inequality,

there exists a constant Cm such that

E

( n∑
i=1

Wi,k1,k2,j1,j2

)2m
 ≤ Cm

[
n∑
i=1

E
[
(Wi,k1,k2,j1,j2)2m

]
+
{

n∑
i=1

E
[
(Wi,k1,k2,j1,j2)2

]}m]
.

For the first set of terms, we know

E
[
(Wi,k1,k2,j1,j2)2m

]
≤ 22m

E


 exp

(
θTk1,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
I {k1 = k2} −

exp
(
θTk2,Szi

)
1 +

∑K−1
l=1 exp

(
θTl,Szi

)
 zi,j1zi,j2

2m


+22mE2m


 exp

(
θTk1,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
I {k1 = k2} −

exp
(
θTk2,SZ

)
1 +

∑K−1
l=1 exp

(
θTl,SZ

)
Zj1Zj2


≤ 22m

{
E
[
(zi,j1zi,j2)2m

]
+ [E (Zj1Zj2)]2m

}
≤ 22m

{√
E
[
(zi,j1)4m

]
E
[
(zi,j2)4m

]
+
[
E
(
Z2
j1

)
E
(
Z2
j2

)]m}
≤ Cm,1,

by sub-exponential tail condition for each Zj , j = 1, . . . , p, where Cm,1 is a positive constant

depending only on m.

For the second set of terms, by takingm = 1, we can also show that there exists a constant Cm,2
depending only on m,

E
[
(Wi,k1,k2,j1,j2)2

]
≤ Cm,2.

Therefore,

E
[
(Wk1,k2,j1,j2)2m

]
= 1

n2mE

( n∑
i=1

Wi,k1,k2,j1,j2

)2m


≤ 1
n2mCm

(
nCm,1 + nmCmm,2

)
≤ C ′mn

−m,

13



where C ′m is a constant depending only on m.

Let {mk1,k2,j1,j2 : k1, k2 = 1, . . . ,K − 1, j1, j2 ∈ S} be a set non-negative integers with

K−1∑
k1=1

K−1∑
k2=1

∑
j1∈S

∑
j2∈S

mk1,k2,j1,j2 = m, (16)

then by iteratively applying Cauchy-Schwarz inequality, we can show that there exists a constant

C2 such that

E

K−1∏
k1=1

K−1∏
k2=1

∏
j1∈S

∏
j2∈S

W
2mk1,k2,j1,j2
k1,k2,j1,j2

 ≤ C2n
−m. (17)

For example, suppose there are three W variables, W 2m1
1 , W 2m2

2 and W 2m3
3 with m1 +m2 +m3 =

m, then

E
[
W 2m1

1 ·W 2m2
2 ·W 2m3

3

]
≤

√
E
[
W 4m1

1

]
E
[(
W 4m2

2 ·W 4m3
3

)]
≤

√
E
[
W 4m1

1

]√
E
[(
W 8m2

2

)]
E
[(
W 8m3

3

)]
≤

√
Cm1n

−2m1
√
Cm2n

−4m2 · Cm3n
−4m3

=
√
Cm1

√
Cm2Cm3n

−m1n−m2n−m3

=
√
Cm1

√
Cm2Cm3n

−m,

where
√
Cm1

√
Cm2Cm3 is a constant depending only on m1, m2 and m3.

Then

Pr
{
λ2

max

(
QS (θS)− 1

n
HS (θS)

)
>

1
2λ1

}
≤ Pr

{∥∥∥∥QS (θS)− 1
n

HS (θS)
∥∥∥∥2

F
>

1
2λ1

}

= Pr

{∥∥∥∥QS (θS)− 1
n

HS (θS)
∥∥∥∥2m

F
>

1
2mλ

m
1

}

≤
E
{∥∥∥QS (θS)− 1

nHS (θS)
∥∥∥2m

F

}
λm1 /2m

=
( 2
λ1

)m
E


K−1∑
k1=1

K−1∑
k2=1

∑
j1∈S

∑
j2∈S

W 2
k1,k2,j1,j2


m

≤
( 2
λ1

)m
C2

(
m+ (K − 1)2Q2 − 1

(K − 1)2Q2 − 1

)
n−m,

14



since there are
(m+(K−1)2Q2−1

(K−1)2Q2−1
)

expectations in the summation after expanding the {·}m and each

of them is ≤ C2n
−m by (17). Define C3 =

(
2
λ1

)m
C2
(m+(K−1)2Q2−1

(K−1)2Q2−1
)
, then with probability at

least 1− C3n
−m,

λ2
max

(
QS (θS)− 1

n
HS (θS)

)
≤ 1

2λ1,

and

λmin

( 1
n

HS (θS)
)
≥ λmin (QS (θS))− λmax

(
QS (θS)− 1

n
HS (θS)

)
≥ λ1 −

1
2λ1

= 1
2λ1 > 0.

Let q = 1
2p (p+ 3), then with probability at least 1−C3q

Qn−m, uniformly for all S with |S| ≤ Q,

λmin
(

1
nHS (θS)

)
≥ 1

2λ1 > 0. Choose m > 2κQ, then as n→∞,

1− C3q
Qn−m ≥ 1− C3n

2κQ−m → 1,

that proves the lower bound.

Proof for upper bound: By Lemma 1, for all S with |S| ≤ Q and θS , there exists a constant

C1 > 0, as n→∞, with probability at least 1− C1n
2κ−M → 1,

λmax

( 1
n

HS (θS)
)
≤ λmax

( 1
n

HS (θS)− 1
n

HS (0)
)

+ λmax

( 1
n

HS (0)
)

≤ λ3 ‖θS‖2 + λmax

( 1
n

HS (0)
)
.

We derive a bound for λmax
(

1
nHS (0)

)
. For any S with |S| ≤ Q,

‖HS (0)‖sp ≤ ‖HS (0)‖F

= (K − 1) max
k1,k2
‖Hk1,k2,S (0)‖F

= (K − 1) max
k1,k2

∥∥∥∥∥
n∑
i=1

ai,k1,k2 (0) zi,SzTi,S

∥∥∥∥∥
F

= (K − 1) max
k1,k2

∥∥∥∥∥
n∑
i=1

[µi,k1 (θS) [I {k1 = k2} − µi,k2 (θS)]] zi,SzTi,S

∥∥∥∥∥
F

≤ (K − 1)
∥∥∥∥∥
n∑
i=1

zi,SzTi,S

∥∥∥∥∥
F

≤ (K − 1)
n∑
i=1

∑
j∈S

z2
i,j

≤ (K − 1)Q max
j∈{1,...,p}

n∑
i=1

z2
i,j .
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Using the similar technique of proof of Lemma 1, we derive a bound for maxj∈{1,...,p}
∑n
i=1 z

2
i,j .

By Rosenthal’s inequality,

E

∣∣∣∣∣
n∑
i=1

(
z2
i,j − E

[
Z2
j

])∣∣∣∣∣
2m
 ≤ Rm

[
n∑
i=1

E
[(
z2
i,j − E

[
Z2
j

])2m
]

+
{

n∑
i=1

E
[(
z2
i,j − E

[
Z2
j

])2
]}m]

≤ C2n
m,

whereC1 is a positive constant independent of n. Since Zj is sub-exponential, for any finite positive

integer m, there exists a constant Cm such that

E
(
Z4m
j

)
≤ Cm, for all j = 1, . . . , p. (18)

By Jensen’s inequality,

E
(
Z2
j

)
≤
[
E
(
Z4m
j

)]1/2m
≤ C1/2m

m . (19)

Therefore for any j ∈ {1, . . . , p},

Pr

{
n∑
i=1

z2
i,j > 2nC1/2m

m

}
= Pr

{
n∑
i=1

[
z2
i,j − E

(
Z2
j

)]
> 2nC1/2m

m − nE [Zj ]
}

≤ Pr

{
n∑
i=1

[
z2
i,j − E

(
Z2
j

)]
> 2nC1/2m

m − nC1/2m
m

}

≤ Pr

{
n∑
i=1

[
z2
i,j − E

(
Z2
j

)]
> nC1/2m

m

}

= Pr


{

n∑
i=1

[
z2
i,j − E

(
Z2
j

)]}2m

> n2mCm


≤

E
[{∑n

i=1

[
z2
i,j − E

(
Z2
j

)]}2m
]

n2mCm

≤ C1n
m.

Cmn2m

= C2n
−m,

where C2 = C1/Cm. Therefore with probability at least 1− qC2n
−m, there is a uniform bound,

max
j∈{1,...,p}

n∑
i=1

z3
i,j ≤ 2nC1/2m

m , (20)

and uniformly for all S with |S| ≤ Q,

‖HS (0)‖sp ≤ (K − 1)Q max
j∈{1,...,p}

n∑
i=1

z2
i,j (21)

≤ 2 (K − 1)QC1/2m
m · n. (22)
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Finally we have for any ‖θS‖2 ≤ R,

λmax

( 1
n

HS (θS)
)
≤ λ3 ‖θS‖2 + λmax

( 1
n

HS (0)
)

≤ λ3R+ 2 (K − 1)QC1/2m
m .

Choose any integer m > 2κ, and define constant λ2 = λ3R+ 2 (K − 1)QC1/2m
m , then as n→∞,

with probability at least

1− C1n
2κ−M − qC2n

−m ≥ 1− C1n
2κ−M − C2n

2κ−m → 1, (23)

for all S with |S| ≤ Q,

λmax

( 1
n

HS (θS)
)
≤ λ2. (24)

Merging the results for lower and upper bounds, there exist positive constants C1, C2 and C3

such that as n→∞, choose M > 4κ and m > 2κQ, then with probability at least

1− C1n
2κ−M − C2n

2κ−m − C3n
2κQ−m → 1, (25)

we have

λ1 ≤ λmin

( 1
n

HS (θS)
)
< λmax

( 1
n

HS (θS)
)
≤ λ2. (26)

Lemma 3 is related to Lemma 1(i) of Foygel and Drton (2011) for multinomial logistic regres-

sion (K > 2).

Lemma 3. Fix any positive constant Q > 0. Under conditions C1 ~ C4, as n → ∞, there exists

constants r1, r2 > 0, with probability at least 1−n−r1q−r2 , uniformly for all S ) A with |S| ≤ Q,

ln
(
θ̃S
)
− ln (θ0) ≤ [|S| − |A|] log

(
nr1q1+r2

)
+ εn,

where θ0 is the true parameter vector, q = p (p+ 3) /2 and εn = o
(
n−1/3

)
.

Proof: There exists t ∈ (0, 1), and θ∗S = tθ̃S + (1− t)θ0, such that

ln
(
θ̃S
)
− ln (θ0)

=
(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS (θ∗S)

(
θ̃S − θ0

)
=

(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS (θ0)

(
θ̃S − θ0

)
(27)

+1
2
(
θ̃S − θ0

)T
[HS (θ0)−HS (θ∗S)]

(
θ̃S − θ0

)
.
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By Lemma 1, with probability at least 1− C1n
2κ−M ,

(27) ≤
(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS (θ0)

(
θ̃S − θ0

)
+ 1

2λ3n ‖θ∗S − θ0‖32

=
(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS (θ0)

(
θ̃S − θ0

)
+ εn.

where εn = 1
2λ3n

∥∥∥θ̃S − θ0
∥∥∥3

2
= o

(
n−1/3

)
by Theorem 1.

Maximizing

(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS (θ0)

(
θ̃S − θ0

)
(28)

with respect to θ̃S , we get

ln
(
θ̃S
)
− ln (θ0) ≤ 1

2sS (θ0)T H−1
S (θ0) sS (θ0) + εn.

Define ỹ and µ̃ as concatenated vectors of length n (K − 1), such that

ỹ =


ỹ1

ỹ2
...

ỹK−1

 , ỹk =


I {y1 = k}
I {y2 = k}

...

I {yn = k}

 , 1 ≤ k ≤ K − 1,

and

µ̃ =


µ̃1

µ̃2
...

µ̃K−1

 , µ̃k =


µ1,k (θ0)
µ2,k (θ0)

...

µn,k (θ0)

 , 1 ≤ k ≤ K − 1.

Define Z̃S as a (K − 1)× (K − 1) block matrix,

Z̃S =


ZS 0 0 0
0 ZS 0 0

0 0 . . . 0
0 0 0 ZS

 , (29)

and W is an n (K − 1)× n (K − 1) square matrix,

W =


W1,1 W1,2 · · · W1,(K−1)

W2,1 W2,2 · · · W2,(K−1)
...

...
. . .

...

W(K−1),1 W(K−1),2 · · · W(K−1),(K−1)

 , (30)
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where each Wk1,k2 , 1 ≤ k1, k2 ≤ K − 1, is an n × n diagonal matrix. If k1 = k2 = k, the ith

diagonal element in Wk,k is µi,k (θ0) (1− µi,k (θ0)). If k1 6= k2, the ith diagonal element in Wk,k

is −µi,k1 (θ0)µi,k2 (θ0). Then

sS (θ0) = Z̃TS (ỹ− µ̃) , HS (θ0) = Z̃TSWZ̃S . (31)

Let u ∈ R|S|(K−1) be a unit vector. We first show that

Pr
{
uT [HS (θ0)]−1/2 sS (θ0) ≥

√
2 [|S| − |A|] log (nr1q1+r2)

}
≤ exp

{
− [|S| − |A|] log

(
nr1q1+r2

)(
1−

√
Q log (nr1q1+r2)

λ3
1λ
−2
3 n

)}
.

DefineA =
√

2 [|S| − |A|] log (nr1q1+r2) and vectorψ ∈ R|S|(K−1) withψS = A·[HS (θ0)]−1/2 u

and other elements set as zero. We know by definition Var (sS (θ0)) = HS (θ0), and∥∥∥W1/2Z̃SψS
∥∥∥2

2
= A2 · uT [HS (θ0)]−1/2 Z̃TSWZ̃S [HS (θ0)]−1/2 u = A2.

and by Lemma 2, with probability at least 1− C1n
2κ−M − C2n

2κ−m − C3n
2κQ−m, for all S with

|S| ≤ Q,

‖ψ‖22 = ‖ψS‖
2
2 = A2 ·

∥∥∥[HS (θ0)]−1/2 u
∥∥∥2

2
≤ A2 ·

∥∥∥[HS (θ0)]−1
∥∥∥

sp
‖u‖22 ≤ A

2 (λ1n)−1 .

We then have

Pr
{
uT [HS (θ0)]−1/2 sS (θ0) ≥ A

}
= E

{
I
{
ψTS Z̃TS (ỹ− µ̃) ≥ A2

}}
= E

{
exp

{
ψTS Z̃TS (ỹ− µ̃)−A2

}}
= exp

{
−ψTS Z̃TS µ̃−A2

}
· E
{

exp
{
ψTS Z̃TS ỹ

}}
= exp

{
−

n∑
i=1
ψTS Z̃Ti,Sµ̃i −A2

}
· E
{

exp
{

n∑
i=1
ψTS Z̃Ti,S ỹi

}}
, (32)

where

ỹi =


I {yi = 1}
I {yi = 2}

...

I {yi = K − 1}

 , µ̃i =


µi,1 (θ0)
µi,2 (θ0)

...

µi,K−1 (θ0)

 , Z̃i,S =


Zi,S 0 0 0
0 Zi,S 0 0

0 0 . . . 0
0 0 0 Zi,S

 .
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As ỹi follows the vector exponential family with cumulant generating function

b
(
θT0,1zi, . . . ,θT0,K−1zi

)
= log

(
1 +

K−1∑
l=1

exp
(
θT0,lzi

))
,

with
∂b
(
θT0,1zi, . . . ,θT0,K−1zi

)
∂
(
θT0,kzi

) =
exp

(
θT0,kzi

)
1 +

∑K−1
l=1 exp

(
θT0,lzi

) = µi,k (θ0) .

By the property of exponential family,

E
{

exp
{

n∑
i=1
ψTS Z̃Ti,S ỹi

}}

= exp
{

n∑
i=1

log
(

1 +
K−1∑
l=1

exp
((

(θ0 +ψ)Tl
)

zi
))
− log

(
1 +

K−1∑
l=1

exp
(
θT0,lzi

))}

= exp
{

n∑
i=1

b
((

(θ0 +ψ)T1
)

zi, · · · ,
(
(θ0 +ψ)TK−1

)
zi
)
− b

(
θT0,1zi, · · · ,θT0,K−1zi

)}
,

and there exists t ∈ (0, 1),

n∑
i=1

b
((

(θ0 +ψ)T1
)

zi,S , · · · ,
(
(θ0 +ψ)TK−1

)
zi,S

)
− b

(
θT0,1zi, · · · ,θT0,K−1zi

)
=

n∑
i=1

(
ψT1 zi, . . . ,ψTK−1zi

)T
∇b
(
θT0,1zi, · · · ,θT0,K−1zi

)
+1

2
(
ψT1 zi, . . . ,ψTK−1zi

)T
∇2b

(
(θ0 + tψ)T1 zi, · · · , (θ0 + tψ)TK−1 zi

) (
ψT1 zi, . . . ,ψTK−1zi

)
=

[
n∑
i=1
ψTS Z̃Ti,Sµ̃i

]
+ 1

2ψ
T
SHS (θ0)ψS + 1

2ψ
T
S [HS (θ0,S + tψS)−HS (θ0,S)]ψS

≤
[
n∑
i=1
ψTS Z̃Ti,Sµ̃i

]
+ A2

2 + 1
2 ‖ψS‖

3
2 nλ3

≤
[
n∑
i=1
ψTS Z̃Ti,Sµ̃i

]
+ A2

2 + A3

2 n−0.5 (λ1)−3/2 λ3.

Therefore

Pr
{
uT [HS (θ0)]−1/2 sS (θ0) ≥ A

}
≤ exp

{
−A

2

2 + A3

2 n−0.5 (λ1)−3/2 λ3

}
,

= exp
{
− [|S| − |A|] log

(
nr1q1+r2

)(
1−

√
2Q log (nr1q1+r2)

λ3
1λ
−2
3 n

)}
.

In next step, following the approach in the proof of Foygel and Drton (2011) Lemma (i), the
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following inequality can be shown to hold. The details are omitted for brevity.

Pr
{
∃S, S ) A, |S| ≤ Q, sS (θ0)T H−1

S (θ0) sS (θ0) ≥ 2 [|S| − |A|] log
(
nr1q1+r2

)}
≤ 1

3n
−r1q−r2 .

Therefore there exists constants r1, r2 > 0, with probability at least 1 − n−r1q−r2 , uniformly

for all S ) A with |S| ≤ Q,

ln
(
θ̃S
)
− ln (θ0) ≤ [|S| − |A|] log

(
nr1q1+r2

)
+ εn.

2.2 Proof of Theorem 1

Theorem 1. Under conditions C1 ~ C4, as n→∞,

max
S⊃A, |S|≤Q

∥∥∥θ̃S − θ0
∥∥∥

2
= Op

(
n−1/2+ξ

)
, (33)

where 0 < ξ < 1/2 and Q ≥ |A| are any positive constants independent of n.

Proof. There exists t ∈ (0, 1) such that

ln
(
θ̃S
)
− ln (θ0) =

(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS

(
tθ̃S + (1− t)θ0

) (
θ̃S − θ0

)
≤

∥∥∥θ̃S − θ0
∥∥∥

2
‖sS (θ0)‖2 −

λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
,

with probability tending to 1, uniformly for all S ⊃ A, |S| ≤ Q, as n→∞ by Lemma 2. Since vec-

tor sS (θ0) has only finite number of elements, ‖sS (θ0)‖2 = O (‖sS (θ0)‖∞). We first calculate

the following uniform bound for ‖sS (θ0)‖∞.

Let ξ be any constant such that 0 < ξ < 1/2

Pr

(
max

S⊃A, |S|≤Q
‖sS (θ0)‖∞ ≥ C1n

1/2+ξ
)

≤
∑

S⊃A, |S|≤Q

K−1∑
k=1

∑
j∈S

[
P
(
|sk,j (θ0)| ≥ C2n

1/2+ξ
)]
,

where constants C1, C2 > 0 and

sk,j (θ0) =
n∑
i=1

(I {yi = k} − µi,k (θ0)) zi,j .

By definition of θ0,

θ0 = arg max
θS :S⊃A

E [log p (Y | Z,θS)] .
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Therefore for all j ∈ S and k = 1, . . . ,K − 1,

E
[
∂ log p (Y | Z,θ)

∂θk,j

]
= E {[I {Y = k} − µk (θ0)]Zj} = 0,

where

µk (θ0) = exp (θ0Z)
1 +

∑K−1
l=1 exp (θ0Z)

where Y and Z are random variables, and the expectation is taken over sampling distribution of

(Z, Y ).

By condition C3, eachZj is sub-exponential. Since (yi,k − µi,k (θ0)) ∈ (−1, 1), (yi,k − µi,k (θ0)) zi,j
is also sub-exponential. By Bernstein’s inequality, there exist constants C3, C4, C5 such that

Pr (|sk,j (θ0)| > nε) = Pr

(∣∣∣∣∣
n∑
i=1

(yi,k − µi,k (θ0)) zi,j

∣∣∣∣∣ > nε

)
≤ C3 exp

(
−C4nε

2
)
, for |ε| ≤ C5.

Let ε = C2n
−1/2+ξ, then

Pr
(
|sk,j (θ0)| > C2n

1/2+ξ
)
≤ C3 exp

(
−C2

2C4n
2ξ
)
.

Since q = 1
2p (p+ 3) ≤ p2 for p ≥ 3, q = O

(
n2κ),

Pr

(
max

S⊃A, |S|≤Q
‖sS (θ0)‖∞ ≥ C1nε

)
≤

∑
S⊃A, |S|≤Q

K−1∑
k=1

∑
j∈S

[
Pr
(
|sk,j (θ0)| ≥ C2n

1/2+ξ
)]

≤ qQ · (K − 1) ·Q · C3 exp
(
−C2

2C4n
2ξ
)

≤ (K − 1) ·Q · C3 exp
(
−C2

2C4n
2ξ + 2κQ logn

)
→ 0,

as n→∞. Recall that,

ln
(
θ̃S
)
− ln (θ0) ≤

∥∥∥θ̃S − θ0
∥∥∥

2
‖sS (θ0)‖2 −

λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
.

Because of ln’s concavity and S ⊃ A, ln
(
θ̃S
)
− ln (θ0) ≥ 0. Therefore we must have

∥∥∥θ̃S − θ0
∥∥∥

2
‖sS (θ0)‖2 −

λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
≥ 0, (34)

which implies ∥∥∥θ̃S − θ0
∥∥∥

2
≤ 2
λ1n
‖sS (θ0)‖2 . (35)
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Since ‖sS (θ0)‖2 = Op
(
n1/2+ξ

)
, then as n→∞,

max
S⊃A, |S|≤Q

∥∥∥θ̃S − θ0
∥∥∥

2
= Op

(
n−1/2+ξ

)
.

2.3 Proof of Theorem 3

Theorem 2. (Forward stage screening consistency) If conditions C1 ~ C4 hold, and all predictors

in P are stepwise detectable, then the forward interaction screening stage finishes in finite number

of steps and is screening consistent. In particular, as n→∞,

Pr
(∣∣∣C̃F ∣∣∣ ≤ Q)→ 1, and Pr

(
C̃F ⊇ P

)
→ 1,

where Q =
⌈
8λ−1

1 θ−2
min logK

⌉
, λ1 is a positive constant defined in Lemma 2 and θmin is a positive

constant defined in condition C2.

Proof. The proof consists of two parts. In the first part we will show that

P
(
C̃F ⊇ P

)
→ 1. (36)

In the second part, we will show that with probability going to 1,
∣∣∣C̃F ∣∣∣ ≤ Q, therefore in the first

part of the proof we will only consider sets C that |C| ≤ Q.

Part I: Let C denote a set of predictors, and let SC denote the set of corresponding terms in

forward interaction screening stage. By definition, SC = C ∪ (C × C) and contains all main effect

and interaction terms for predictors in C. We will show the uniform bound,

Pr

(
max

C:Cc∩P6=∅,|C|≤Q
min
j∈Cc

{
EBICγ

(
SC∪{j}

)
− EBICγ (SC)

}
< 0

)
→ 1. (37)

This implies that if current set C does not contain all predictors in P , then, with probability tending

to 1, we can always find a new predictor j ∈ Cc such that EBICγ
(
SC∪{j}

)
− EBICγ (SC) < 0.

Therefore, forward screening stage will proceed until all predictors are added into the model, and

eventually stop at some C̃F ⊇ P , which also implies SC̃F
⊇ A.

When Cc∩P 6= ∅ and all the relevant predictors in P are stepwise detectable, there existsm ≥ 0
such that ∪m−1

i=0 Ti ⊂ C and Cc ∩ Tm 6= ∅. According to definition of stepwise detectable condition,

there exists j ∈ Cc ∩ Tm and constants θmax > θmin > 0 such that

θmin ≤
∥∥∥θj∗SC∪{j}

∥∥∥
∞
≤ θmax.

Vector θj∗Cj contains the parameters in θ∗Cj associated with predictor Xj . By the Mean Value Theo-
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rem, there exists t ∈ (0, 1),

max
C:Cc∩P6=∅,|C|≤Q

min
j∈Cc

[
ln
(
θ̃SC

)
− ln

(
θ̃SC∪{j}

)]
≤ max

C:Cc∩P6=∅,|C|≤Q
min

j∈Cc∩Tm

[
ln
(
θ̃SC

)
− ln

(
θ̃SC∪{j}

)]
= max

C:Cc∩P6=∅,|C|≤Q
min

j∈Cc∩Tm

[
−1

2
(
θ̃SC − θ̃SC∪{j}

)T
HSC∪{j}

(
tθ̃SC + (1− t) θ̃SC∪{j}

) (
θ̃SC − θ̃SC∪{j}

)]
≤ max

C:Cc∩P6=∅,|C|≤Q
min

j∈Cc∩Tm

[
−λ1n

2

∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2

2

]
.

with probability going to 1 for all |C| ≤ Q by Lemma 2. We then give a lower bound to
∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2

2
.

We first consider
∥∥∥θ̃SC − θ∗SC

∥∥∥2

2
and

∥∥∥θ̃SC∪{j} − θ
∗
SC∪{j}

∥∥∥2

2
. There exists t ∈ (0, 1),

ln
(
θ̃SC

)
− ln

(
θ∗SC

)
=

(
θ̃SC − θ

∗
SC

)T
sS
(
θ∗SC

)
− 1

2
(
θ̃SC − θ

∗
SC

)T
HS

(
tθ̃SC + (1− t)θ∗SC

) (
θ̃SC − θ

∗
SC

)
≤

∥∥∥θ̃SC − θ
∗
SC

∥∥∥
2

∥∥∥sS (θ∗SC

)∥∥∥
2
− λ1n

2

∥∥∥θ̃SC − θ
∗
SC

∥∥∥2

2
,

uniformly for all C such that |C| ≤ Q, as n → ∞, with probability tending to 1 − C1n
2κ−M −

C2n
2κ−m − C3n

2κQ−m → 1 by Lemma 2.

Because vector sS
(
θ∗SC

)
has only finite number of elements,

∥∥∥sS (θ∗SC

)∥∥∥ is in the same order

of n as
∥∥∥sS (θ∗SC

)∥∥∥
∞

. We first calculate the following uniform bound for
∥∥∥sS (θ∗SC

)∥∥∥
∞

. Using the

method in proof of theorem 1, we get the following uniform bound for all |C| ≤ Q. For any ξ > 0,

there exists a constant C1 > 0,

Pr

(
max
C:|C|≤Q

∥∥∥sS (θ∗SC

)∥∥∥
∞
≥ C1n

1/2+ξ
)
→ 0,

as n→∞. So
∥∥∥sS (θ∗SC

)∥∥∥
2

= Op
(
n1/2+ξ

)
, and

ln
(
θ̃SC

)
− ln

(
θ∗SC

)
≤

∥∥∥θ̃SC − θ
∗
SC

∥∥∥
2
Op
(
n1/2+ξ

)
− λ1n

2

∥∥∥θ̃SC − θ
∗
SC

∥∥∥2

2
.

Because of ln’s concavity, ln
(
θ̃SC

)
− ln

(
θ∗SC

)
> 0. Therefore we must have

max
C:|C|≤Q

∥∥∥θ̃SC − θ
∗
SC

∥∥∥
2

= Op
(
n−1/2+ξ

)
,

as n→∞. Similarly

max
C:|C|≤Q

∥∥∥θ̃SC∪{j} − θ
∗
SC∪{j}

∥∥∥
2

= Op
(
n−1/2+ξ

)
,

Now we give lower bound to
∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2

2
. By the definition of stepwise detectable condi-
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tion, there exists j ∈ Sc ∩ Tm such that

θmin ≤
∥∥∥θj∗S∪{j}∥∥∥∞ ≤ θmax.

Therefore with probability tending to 1 as n → ∞, uniformly for all C such that Cc ∩ P 6= ∅ and

|C| ≤ Q,

max
j∈Cc

∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2

2
≥ max

j∈Cc∩Tm

∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2

≥ max
j∈Cc∩Tm

K−1∑
k=1

∑
l∈SC∪{j}\SC

θ̃2
l,k,SC∪{j}

≥ max
j∈Cc∩Tm

max
k=1,...,K−1

max
l∈SC∪{j}\SC

θ̃2
l,k,SC∪{j}

≥ max
j∈Cc∩Tm

max
k=1,...,K−1

max
l∈SC∪{j}\SC

(
θ∗l,k,SC∪{j}

+ θ̃l,k,SC∪{j} − θ
∗
l,k,SC∪{j}

)2

= max
j∈Cc∩Tm

max
k=1,...,K−1

max
l∈SC∪{j}\SC

(
θ∗2l,k,SC∪{j}

+Op
(
n−1/2+ξ

))
,

≥ 1
2θ

2
min,

as n→∞. Eventually, we have

max
C:Cc∩P6=∅,|C|≤Q

min
j∈Cc

[
ln
(
θ̃SC

)
− ln

(
θ̃SC∪{j}

)]
≤ max

C:Cc∩P6=∅,|C|≤Q
min

j∈Cc∩Tm

[
ln
(
θ̃SC

)
− ln

(
θ̃SC∪{j}

)]
≤ max

C:Cc∩P6=∅,|C|≤Q
min

j∈Cc∩Tm

[
−λ1n

2

∥∥∥θ̃SC − θ̃SC∪{j}

∥∥∥2
]

≤ −1
4nλ1θ

2
min. (38)

Therefore, as n→∞,

EBICγ
(
SC∪{j}

)
− EBICγ (SC) ≤ −1

4nλ1θ
2
min +

[∣∣∣SC∪{j}∣∣∣− |SC |] (1
2 logn+ γ log p

)
≤ −n

(1
4λ1θ

2
min −

1
n

[∣∣∣SC∪{j}∣∣∣− |SC |] (1
2 logn+ γ log p

))
< 0,

holds uniformly for all |C| ≤ Q and j ∈ A with probability going to 1, and

P

(
max

C:Cc∩P6=∅,|C|≤Q
min
j∈Cc

{
EBICγ

(
SC∪{j}

)
− EBICγ (SC)

}
< 0

)
→ 1, (39)

thus we proved that P
(
S̃F ⊇ A

)
→ 1, as n→∞.

Part II: In this part, we will show that as n → ∞, with probability tending to 1, the forward
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interaction screening stage will stop in a finite number of steps. In particular, we will show that the

number of steps in forward stage cannot exceed Q =
⌈
8λ−1

1 θ−2
min logK

⌉
.

Let C1, C2, . . . , C̃F denote the selected set of predictors in each step of the forward interaction

screening stage. By definition C1 = ∅, so Pr (Y = k | X,θC1) = 1/K for k = 1, . . . ,K, and

ln
(
θ̃SC1

)
=

n∑
i=1

K∑
k=1

I {yi = k} log (1/K) = n log (1/K) .

Define Gn (C) = − 1
n ln

(
θ̃SC

)
, then

Gn (C1) = − 1
n
n log (1/K) = logK (40)

By the nature of forward screening stage, C1 ⊂ C2 ⊂ · · · ⊂ C̃F , thus

Gn (C1) > Gn (C2) > · · · > Gn
(
C̃F
)
≥ 0.

Consider two adjacent sets Cm and Cm+1. Uniformly for all m with Ccm ∩ P 6= ∅, |Cm+1| ≤ Q,

Gn (Cm)−Gn (Cm+1) = 1
n

max
j∈Cc

m

[
ln
(
θ̃SCm∪{j}

)
− ln

(
θ̃SCm

)]
≥ 1

n
max

j∈Cc
m∩Tm

[
ln
(
θ̃SCm∪{j}

)
− ln

(
θ̃SCm

)]
≥ 1

n

[1
4nλ1θ

2
min

]
= 1

4λ1θ
2
min,

with probability going to 1 as n→∞, where λ1 > 0, θmin > 0 are constants defined earlier. Define

Q =
⌈
8λ−1

1 θ−2
min logK

⌉
. It is straightforward to see that

Gn (C1) = Gn (CQ+1) +
Q∑
i=1

(Gn (Ci)−Gn (Ci+1))

≥
Q∑
i=1

(Gn (Ci)−Gn (Ci+1))

≥ Q
1
4λ1θ

2
min

> logK. (41)

Eq (40) contradicts to the fact Gn (C1) = logK. Therefore with probability going to 1, the forward

screening stage adds all predictors in P in less than Q =
⌈
8λ−1

1 θ−2
min logK

⌉
steps, and it is also

straightforward to show that once Cm ⊃ P , the forward interaction screening stops at step m. In

summary, forward interaction screening finishes in Q steps and
∣∣∣C̃F ∣∣∣ ≤ Q.
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2.4 Proof of Theorem 4

Theorem 3. (Uniform bound of EBIC in backward stage) Fix any positive constant Q > 0.

Under conditions C1 ~ C4, as n→∞,

Pr

(
max

S)A:|S|≤Q
min
j∈S\A

{EBICγ (S\ {j})− EBICγ (S)} < 0
)
→ 1, (42)

and

Pr

(
min

S⊃A:|S|≤Q
min
j∈A
{EBICγ (S\ {j})− EBICγ (S)} < 0

)
→ 0, (43)

for any constant γ > Q− |A| − (2κ)−1.

Proof. Eq (42) implies that if S ) A and |S| ≤ Q, with probability tending to 1, there will be at

least one irrelevant term j ∈ S ∩ Ac such that removing j from S leads to lower EBIC.

For j ∈ S\A, we have A ⊆ S\ {j} ( S, and ln
(
θ̃S
)
≥ ln

(
θ̃S\{j}

)
≥ ln

(
θ̃A
)

. By Lemma

3, as n → ∞, there exists constants r1, r2 > 0, with probability at least 1 − n−r1q−r2 , uniformly

for all S ) A with |S| ≤ Q,

ln
(
θ̃S
)
− ln

(
θ̃S\{j}

)
≤ ln

(
θ̃S
)
− ln

(
θ̃A
)

≤ ln
(
θ̃S
)
− ln (θ0)

≤ [|S| − |A|] log
(
nr1q1+r2

)
+ εn,

where θ0 is the true parameters, q = p (p+ 3) /2 and εn = O
(
n−1/3

)
. Let ∆ = |S| − |A|. For all

S ) A : |S| ≤ Q and any j ∈ S\A, with probability at least 1− n−r1q−r2 ,

EBICγ (S\ {j})− EBICγ (S)

= 2
[
ln
(
θ̃S
)
− ln

(
θ̃S\{j}

)]
− (logn+ 2γ log p)

≤ ∆ (2r1 logn+ 2 (1 + r2) log q)− (logn+ 2γ log p)

≤ (2r1∆− 1) logn+ (2∆ + 2∆r2 − 2γ) log p

≤
(2r1∆− 1

κ
+ 2∆ + 2∆r2 − 2γ

)
log p

< 0,

with γ > ∆ + ∆r2 + 2r1∆−1
2κ . Since ∆ ≤ Q− |A| and r1, r2 > 0 can be arbitrarily small, we can

choose any γ > Q− |A| − (2κ)−1. Uniformly for all any S ) A : |S| ≤ Q and any j ∈ S\A, we

have

max
S)A:|S|≤Q

min
j∈S\A

{EBICγ (S\ {j})− EBICγ (S)} < 0,

with probability at least 1− n−r1q−r2 → 1 as n→∞.

Eq (43) implies that if S ⊃ A and |S| ≤ Q, then with probability tending to 1, there is no any

relevant term j ∈ A such that removing j from S leads to lower EBIC. Therefore is no relevant
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term will be removed from S as n→∞.

There exists t ∈ (0, 1) such that

ln
(
θ̃S\{j}

)
− ln

(
θ̃S
)
≤ ln

(
θ̃S\{j}

)
− ln

(
θ̃A
)

≤ ln
(
θ̃S\{j}

)
− ln (θ0)

=
(
θ̃S − θ0

)T
sS (θ0)− 1

2
(
θ̃S − θ0

)T
HS

(
tθ̃S + (1− t)θ0

) (
θ̃S − θ0

)
≤

∥∥∥θ̃S − θ0
∥∥∥

2
‖sS (θ0)‖2 −

λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
,

uniformly for all |S| ≤ Q with probability tending to 1 by Lemma 2.

ln
(
θ̃S\{j}

)
− ln

(
θ̃S
)
≤ ln

(
θ̃S
)
− ln (θ0)

≤
∥∥∥θ̃S − θ0

∥∥∥
2
‖sS (θ0)‖2 −

λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
(44)

=
∥∥∥θ̃S − θ0

∥∥∥
2
Op
(
n1/2+ξ

)
− λ1n

2

∥∥∥θ̃S − θ0
∥∥∥2

2
.

By condition C2, there exists a constant θmin > 0 such that
∥∥∥θ̃S − θ0

∥∥∥
2
≥ θmin. Thus with

sufficiently large n, there exists positive constants C1,

ln
(
θ̃S\{j}

)
− ln

(
θ̃S
)
≤ −C1θ

2
minn,

and as n→∞, with probability going to 1,

EBICγ (S\ {j})− EBICγ (S) ≥ 2C1θ
2
minn− [|S| − |A|] (logn+ 2γ log p) > 0, (45)

uniformly for all S ⊃ A : |S| ≤ Q and j ∈ A, which indicates that with probability going to 0,

min
S⊃A:|S|≤Q

min
j∈A
{EBICγ (S\ {j})− EBICγ (S)} < 0.
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